
Programming Tools in Data Science
Exercise 3

31 October 2024
Correction: 7 November 2024

Lecture 10: Functional Programming

Problem 1: Using a for loop, calculate the total monthly sales
for each product.

1. For loop approach

product_sales <- list(

product1 = c(50, 45, 60, 55, 70, 80, 75, 90, 85, 60, 70, 65, 70, 75, 80,

85, 90, 95, 85, 70, 75, 80, 60, 45, 55, 50, 45, 60, 65),

product2 = c(30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100,

105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160,

165, 170, 175),

product3 = c(20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48,

50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78)

)

Initialize an empty vector to store results

f_for = function(x){total_sales <- c()

Loop through each product in the product_sales list

for (product in names(x)) {
Calculate the total sales for the current product

total_sales[product] <- sum(x[[product]])

}
total_sales

}
Display the total monthly sales for each product

f_for(product_sales)

product1 product2 product3

1990 3075 1470

Problem 2: Repeat 1 using map.

Load purrr package

library(purrr)

Use map to calculate total monthly sales for each product

f_map = function(x){
map(x, sum)

}
Display the total monthly sales for each product

f_map(product_sales)

$product1

[1] 1990

Page 1 of 14

Programming Tools in Data Science
Exercise 3

31 October 2024
Correction: 7 November 2024

##

$product2

[1] 3075

##

$product3

[1] 1470

As a result, we obtain a list of three lists. If we want to specify the class of the output,
we can use functions such as map dbl, map int, map lgl, map chr, etc.

Problem 3: Repeat 1 using lapply.

Use lapply to calculate total monthly sales for each product

f_lapply = function(x){
lapply(x, sum)

}

Display the total monthly sales for each product

f_lapply(product_sales)

$product1

[1] 1990

##

$product2

[1] 3075

##

$product3

[1] 1470

We observe the same result. Compared to map, the function lapply is part of base R
and always returns a list.

Problem 4: Repeat 1 using sapply.

Use sapply to calculate total monthly sales for each product

f_sapply = function(x){
sapply(x, sum)

}

Display the total monthly sales for each product

f_sapply(product_sales)

product1 product2 product3

1990 3075 1470

As a result, we have a numeric vector.

Page 2 of 14

Programming Tools in Data Science
Exercise 3

31 October 2024
Correction: 7 November 2024

Problem 5: Repeat 1 using vapply.

#5. Vapply

Use vapply to calculate total monthly sales for each product

f_vapply = function(x){
vapply(x, FUN = sum, FUN.VALUE = numeric(1))

}

Display the total monthly sales for each product

f_vapply(product_sales)

product1 product2 product3

1990 3075 1470

The function vapply produces the same result as sapply, but with stricter control
over outputs. Unlike sapply, which tends to simplify outputs automatically, vapply
consistently returns the output type specified in FUN.VALUE.

Problem 6: Repeat 1 using mclapply or parLapply.

#6. Mclapply and parLapply

We install a library "parallel" for parallel calculus

library(parallel)

One way to implement parallelism is to use mclapply (does not

supported by Windows!)

mclapply(product_sales , sum , mc.cores = 5)

Alternatively , one can use parLapply

To this end , we create 5 clusters

cl <- makeCluster (5)

f_par = function(x){

and we are able to apply our function

parLapply(cl, x, sum)

We should stop clusters

}

Display the total monthly sales for each product

f_par(product_sales)

stopCluster(cl)

The advantages of the mclapply function:

Page 3 of 14

Programming Tools in Data Science
Exercise 3

31 October 2024
Correction: 7 November 2024

1. It provides a quick and simple parallel solution without inter-process communica-
tion.

2. It is well-suited for tasks that can be completed independently on a single machine.

However, mclapply is not supported on Windows (i.e., it is not portable) and does not
allow communication between parallel processes.

On the other hand, the function parLapply is supported on both Windows and Unix-
like systems, and it provides the user with more control over the processes (including
parallel computation across multiple computers). To use parLapply, however, one needs
to create clusters and manage the processes accordingly.

Problem 7: Compare these six approaches with microbenchmark.
Which approach is the most efficient?

To be able to treat parLapply as a function we move ”stopCluster(cl)” in the end of the
code.

To this end , we create 5 clusters

cl <- makeCluster (5)

f_par = function(x){

and we are able to apply our function

parLapply(cl, x, sum)

We should stop clusters

}

Display the total monthly sales for each product

f_par(product_sales)

7. Benchmark

library(microbenchmark)

Testing performance of the aforementioned functions

microbenchmark(f_for(product_sales), f_map(product_sales), f_

lapply(product_sales), f_sapply(product_sales), f_vapply(

product_sales), f_par(product_sales), times = 1000)

stopCluster(cl)

The table with results should look as follows:

Page 4 of 14

Programming Tools in Data Science
Exercise 3

31 October 2024
Correction: 7 November 2024

According to the table, we can conclude that lapply and for loop implementation
work faster than other functions. The function parlapply is the slowest one in this
example, which might be a case for simple tasks, since parlapply requires time to manage
several processes and, therefore, be inefficient in simple problems.

Lecture 11: R Package

Check pkgtest repository on GitHub https://github.com/ptds2024/pkgtest.
Below we provide a detailed explanation of how to create and develop an R package.

To begin, prepare the initial structure of the package.

Problem 1.

1. One should create a project: New project/New directory/R package (it is recom-
mended to click ”create a git repository” to later publish the package on github) or
using a command create package("path/to/package name") on a console.

2. Create a remote repository on github and connect it to your package.

3. Install packages devtools, usethis, knitr, pkgdown, roxygen2 and testthat,
which are used a lot while developing a package.

4. To efficiently develop a package you should interact a lot with the console to write
various commands.

5. There is no need to store default ”hello.R”, ”hello.Rd” and ”NAMESPACE” files,
they can be removed (the new files appear during development of the package).

To create a function in the package:

1. Use a command usethis::use r("your function name"), which makes an empty
file ”your function name.R” in the folder ”R”.

2. Add body of a function:

`%r%` <- function(y, x) {
fit <- lm(y ~ x)

coef(fit)

}

3. Create a documentation block for the function. To this end, go here: Code/Insert
Roxygen Skeleton. Please note that your cursor should be on the same string as
the beginning of your function (not before, otherwise error might appear). The
obtained file should like

#' Title

#'

#' @param y

#' @param x

Page 5 of 14

https://github.com/ptds2024/pkgtest

Programming Tools in Data Science
Exercise 3

31 October 2024
Correction: 7 November 2024

#'

#' @return

#' @export

#'

#' @examples

`%r%` <- function(y, x) {
fit <- lm(y ~ x)

coef(fit)

}

4. Edit necessary fields: replace ”Title” with @title and write the appropriate title,
fill in information about parameters, return result. @export means that the function
will be available for users. Make examples with @example or @examples to illustrate
for users how the function works (see Problem 6 for more details). Optionally one
can add section @description to describe the function.

5. Since functions lm and coef belong to a built-in library stats we should mention
that we use this functions in @importFrom (or @import to import whole packages).
This section is not generated automatically.

6. The file should have the following view:

#' @title Function to calculate the regression coefficients

#' @description This function calculates

#' the regression coefficients of a linear model

#' @param y The dependent variable

#' @param x The independent variable

#' @return The regression coefficients

#' @example /inst/examples/eg_reg_coef.R

#' @importFrom stats lm coef

#' @export

`%r%` <- function(y, x) {
fit <- lm(y ~ x)

coef(fit)

}

7. Note that to create several functions in one package, one should create several sepa-
rate files for each function (using the command usethis::use r("your function name")).

Problem 2.

The DESCRIPTION file contains the metadata of a package (such as the author of the pack-
age, license, dependencies, etc.). It allows R to understand the package’s dependencies
and provides necessary metadata for users.

To choose a license use the following command: usethis::use mit license. The
file should like

Page 6 of 14

Programming Tools in Data Science
Exercise 3

31 October 2024
Correction: 7 November 2024

Package: pkgtest

Type: Package

Title: Package to showcase package building in R to students

Version: 0.1.0

Authors@R: c(person("Samuel", "Orso", email = "samuel.orso@unil.ch",

role = c("aut", "cre")),

person("Timofei", "Shashkov",

email = "timofei.shashkov@unil.ch", role = "aut"))

Maintainer: <samuel.orso@unil.ch>

Description: More about what it does (maybe more than one line)

Use four spaces when indenting paragraphs within the Description.

License: MIT + file LICENSE

Suggests:

testthat (>= 3.0.0),

knitr,

rmarkdown

Depends: R (>= 4.0.0)

Encoding: UTF-8

LazyData: true

RoxygenNote: 7.3.1

Config/testthat/edition: 3

Problem 3.

To provide users with information about a package’s functions and datasets, each package
should include .Rd files, which are stored in the "man" folder.

To generate documentation for functions and datasets, you can use the command
devtools::document(). This command automatically creates the necessary documenta-
tion files for the package and updates the NAMESPACE file, which manages which functions
and objects are exported (made accessible to users) and which functions are imported
from other packages.

To access the documentation for a created function your function, use the command
?your function.

Problem 4.

To add a dataset, we first need to upload the raw dataset. This can be done using the
following procedure:

1. Use the command usethis::use data raw() to create a folder called data-raw

with an R script file named DATASET.R. Alternatively, you can create the folder and
R script manually (although this is not recommended).

2. Upload the dataset snipes.csv (which you can find here https://ptds.samorso.ch/exercises/)
to the data-raw folder.

3. Modify DATASET.R: Load the dataset using the command read.csv and then save
it to the data folder as an .rda file, so it will be easily accessible for users after
loading the package. Run the code in DATASET.R to save the dataset.

Page 7 of 14

https://ptds.samorso.ch/exercises/

Programming Tools in Data Science
Exercise 3

31 October 2024
Correction: 7 November 2024

4. The resulting DATASET.R file should look like this:

code to prepare snipes.csv dataset

snipes <- read.csv(file = "data-raw/snipes.csv")

usethis::use_data(snipes, overwrite = TRUE)

5. Add documentation for the dataset. To do this, create an R script file in the R

folder with the following content:

#' Snipes price data

#'

#' @format ## snipes

#' A data frame with 48 rows and 3 columns:

#' \describe{
#' \item{discount}{Discounted price of sneakers}
#' \item{brand}{Brand of sneakers}
#' \item{price}{Original price of sneakers}
#' }
#' @source <https://www.snipes.ch/>

"snipes"

6. To update the documentation, use the command devtools::document().

Problem 5.

Another important component of each package is a vignette, which is an RMarkdown file
used to provide a detailed guide on how to use the package. To create a vignette with
the name "my-vignette", use the command usethis::use vignette("my-vignette").
Modify the file to explain to users how to work with your package.

In order to run the rmarkdown file you should use the command devtools::install()
to install the package on your computer.

Problem 6.

There are two different ways to provide examples in the documentation of functions.
The first method is to include example calculations directly in the R script file for the
functions. This is done using the @examples tag in the roxygen2 comments, as shown in
the example below:

#' @title Function to calculate the regression coefficients

#' @description This function calculates the regression

coefficients of a linear model

#' @param y The dependent variable

#' @param x The independent variable

#' @return The regression coefficients

#' @examples cars$speed%r%cars$distance
#' @importFrom stats lm coef

#' @export

Page 8 of 14

Programming Tools in Data Science
Exercise 3

31 October 2024
Correction: 7 November 2024

`%r%` <- function(y, x) {

fit <- lm(y ~ x)

coef(fit)

}

Alternatively, for complex examples, you can create them as R scripts in the directory
inst/examples/.

To start, create the nested folders and an R script either manually or by using the
command usethis::use directory("inst/examples").

In the R script (e.g., inst/examples/my example.R), you can write examples as be-
fore, which will be available for users to run. These examples demonstrate how to use
your functions in different scenarios.

linear regression

cars$speed %r% cars$dist

To document such examples, you should reference the file path inst/examples/my example.R

next to the @example tag (note: use @example for file-based examples, not @examples as
used for inline examples).

#' @title Function to calculate the regression coefficients

#' @description This function calculates

#' the regression coefficients of a linear model

#' @param y The dependent variable

#' @param x The independent variable

#' @return The regression coefficients

#' @example /inst/examples/eg_reg_coef.R

#' @importFrom stats lm coef

#' @export

`%r%` <- function(y, x) {
fit <- lm(y ~ x)

coef(fit)

}

Before publishing a package, it is important to verify that it works correctly. First, we
should check the package to ensure it meets R package standards and can be distributed
without issues. This process covers a broad range of aspects, including documentation,
dependencies, examples, and compliance with CRAN policies.

To ensure that functions work correctly, we should also add tests. These tests help
confirm that the package functions as expected and can handle a variety of inputs and
use cases.

Problem 7.

Before testing functions, we need to create test files, which will be located in tests/testthat/.
By running the command usethis::use testthat(), we create the directory tests/testthat
along with a file testthat.R inside the tests folder. This file will manage the tests for
the functions in the package.

Tests are written as R scripts located in the testthat folder. Common functions for
testing include:

Page 9 of 14

Programming Tools in Data Science
Exercise 3

31 October 2024
Correction: 7 November 2024

• expect error: checks that an error is thrown for specific inputs.

• expect type: verifies that the output type matches the expected type.

• test that: organizes the tests for a function or feature.

Here is an example of a test file:

test_that("regression coefficient input check",{
expect_error(cars$speed %r% cars)

})
test_that("regression coefficient output",{
expect_type(cars$speed %r% cars$dist, "double")

})

To actually test the functions, run the command devtools::test().

Problem 8.

To enable automated checking, use usethis::use github action check standard().
This command creates a .github folder that contains a workflows folder with an R-CMD-check.yaml
file.

This YAML file configures GitHub Actions to automatically check the package on
various operating systems and R versions each time updates are pushed to the remote
repository. If any errors appear, GitHub will notify you.

Problem 9.

To create a professional website for your package, you can follow these steps:

1. Run the command usethis::use pkgdown() to create the file pkgdown.yml, which
configures the website for your package.

2. Use pkgdown::build site() to build the website locally.

3. To link the website with the remote GitHub repository, add the repository URL
in pkgdown.yml and include the same link in the DESCRIPTION file (e.g., URL:
<link>). Don’t forget to save these changes.

4. To set up automatic website updates via GitHub Actions, run the command

usethis::use github action("pkgdown").

5. Push the changes to your remote GitHub repository.

Lecture 12: Advanced Shiny Applications

Problem 1.

Similarly to the problem 1 from Lecture 9, see modified code in the next problem.

Page 10 of 14

Programming Tools in Data Science
Exercise 3

31 October 2024
Correction: 7 November 2024

Problem 2.

library(shiny)

library(magrittr)

library(bslib)

Define UI for application that draws a histogram

ui <- fluidPage(

theme = bs_theme(bootswatch = "superhero", font_scale = 1.5),

Application title

titlePanel("MTCars Data"),

Sidebar with a slider input for number of bins

sidebarLayout(

sidebarPanel(

selectInput("vars", "Variable", choices = names(mtcars)),

sliderInput("cells",

"Number of bins:",

min = 1,

max = 50,

value = 30),

textInput(inputId = "label_x",

label = "Label for the x-axis:"),

textInput(inputId = "title",

label = "Title for the graph:"),

actionButton(inputId = "make_graph",

label = "Make the plot!",

icon = icon("drafting -compass"))

),

Show a plot of the generated distribution

mainPanel(

tabsetPanel(

tabPanel("Plot", plotOutput("distPlot")),

tabPanel("Summary statisics", tableOutput("tabStats"))

)

)

)

)

server <- function(input , output) {

x <- reactive(mtcars[,input$vars]) %>% bindEvent(input$make_
graph)

breaks <- reactive(seq(min(x()), max(x()), length.out = input$
cells + 1)) %>% bindEvent(input$make_graph)

xlab <- reactive(input$label_x) %>% bindEvent(input$make_graph)
title <- reactive(input$title) %>% bindEvent(input$make_graph)
observeEvent(input$make_graph , message("make a new graph"))

Page 11 of 14

Programming Tools in Data Science
Exercise 3

31 October 2024
Correction: 7 November 2024

output$distPlot <- renderPlot ({

draw the histogram with the specified number of cells

hist(x(), breaks = breaks (), col = 'darkgray ', border = '
white ', xlab=xlab(), main=title())

})

output$tabStats <- renderTable ({t(summary(x()))})

}

Run the application

shinyApp(ui = ui, server = server)

It is often beneficial to create functions to shorten code; however, due to the reactive
nature of Shiny app code, a different approach is required. In Shiny, we use modules to
organize and encapsulate code, making it easier to manage and reuse reactive components.

Problem 3

library(shiny)

library(magrittr)

library(bslib)

Define the UI for the histogram and summary module

histogramModuleUI <- function(id) {

ns <- NS(id)

sidebarLayout(

Sidebar panel for input controls

sidebarPanel(

selectInput(ns("var"), "Variable", choices = names(mtcars))

,

sliderInput(ns("cells"), "Number of bins:", min = 1, max =

50, value = 30),

textInput(inputId = ns("label_x"), label = "Label for the x

-axis:"),

textInput(inputId = ns("title"), label = "Title for the

graph:"),

actionButton(inputId = ns("make_graph"), label = "Make the

plot!", icon = icon("drafting -compass"))

),

Main panel with tabset for plot and summary table

mainPanel(

tabsetPanel(

tabPanel("Plot", plotOutput(ns("distPlot"))),

tabPanel("Summary statistics", tableOutput(ns("tabStats")

))

)

)

)

}

Page 12 of 14

Programming Tools in Data Science
Exercise 3

31 October 2024
Correction: 7 November 2024

Define the server logic for the histogram and summary module

histogramModuleServer <- function(id) {

moduleServer(id , function(input , output , session) {

Reactive expression for the selected variable data

x <- reactive ({

mtcars [[input$var]]
}) %>% bindEvent(input$make_graph)

Reactive expression for histogram breaks based on the

number of bins

breaks <- reactive ({

seq(min(x(), na.rm = TRUE), max(x(), na.rm = TRUE), length.

out = input$cells + 1)

}) %>% bindEvent(input$make_graph)

Generate the histogram plot

output$distPlot <- renderPlot ({

hist(

x(),

breaks = breaks (),

col = 'darkgray ',
border = 'white ',
xlab = input$label_x,
main = input$title

)

})

Generate the summary statistics table

output$tabStats <- renderTable ({

t(summary(x()))

})

})

}

Define the main UI of the app

ui <- fluidPage(

theme = bs_theme(bootswatch = "superhero", font_scale = 1.5),

titlePanel("MTCars Data"),

Call the module UI function within the main app UI

histogramModuleUI("histogram1")

)

Define the main server logic of the app

server <- function(input , output , session) {

Call the module server function

histogramModuleServer("histogram1")

}

Run the application

shinyApp(ui = ui, server = server)

Page 13 of 14

Programming Tools in Data Science
Exercise 3

31 October 2024
Correction: 7 November 2024

Problem 4.

The shinyuieditor package enables the creation of polished, user-friendly interfaces for
Shiny apps. To launch shinyuieditor, run the following code:

library(shinyuieditor)

shinyuieditor::launch_editor(app_loc = "/shinyapp.R")

Replace /shinyapp.R with the path to the Shiny app file you want to modify. Make
sure to include the .R extension at the end of the file name (e.g., shinyapp.R).

Problem 5.

See here https://github.com/ptds2024/Shinypackage.git

Page 14 of 14

https://github.com/ptds2024/Shinypackage.git

