Programming Tools in Data Science 17 October 2024
Exercise 2 - Correction Correction: 24 October 2024

Lecture 7: Object-Oriented Programming

Problem 1: Create a summary function for the class pixel

In R, method dispatch for S3 objects works by calling the method that matches the class
of the object. First, we define a simple class pixel, then we create a custom summary
method for this class.

pixel <- function(x, y, color) {
structure(list(x = x, y = y, color = color), class = "pixel")

}

summary.default <- function(object) {
print ("No summary available for this object.")

}

p <- pixel(10, 15, "red")
summary (p)

## [1] "No summary available for this object."

summary.pixel <- function(object) {
cat("Pixel Information: \n")

cat ("X position: ", object$x, "\n")
cat("Y position: ", object$y, "\n")
cat("Color: ", object$color, "\n")

summary (p)

## Pixel Information:
## X position: 10
## Y position: 15
## Color: red

Problem 2: Difference between t.test() and t.data.frame()

The function t.test() performs a Student’s t-test for statistical inference, while t() is
a generic method that computes the transpose of a matrix or data frame. If you create
an object with a custom class, and the class does not have a specific t () method, R will
fall back to the default method.

Running the code below demonstrates the error due to the absence of a t.test method
for the custom class:

Page 1 of



Programming Tools in Data Science 17 October 2024

Exercise 2 - Correction Correction: 24 October 2024
x <- structure(1:10, class = "test")
t(x)

## [1,] 1 2 3 4 B 6 7 8 9 10
## attr(,"class")
## [1] "test"

Since t () is looking for a method matching the class test, but no such method exists,
it returns an error.

Problem 3: Understanding UseMethod ()

In this example, UseMethod () is used to dispatch based on the class of the argument.
The function g() does not modify the class of its arguments, so the default method
g.default () is called. However, there is a subtle scoping issue in this code where the
variable y is not available in the scope of g.default().

g <- function(x) {
x <- 10
y <- 10
UseMethod("g")

}

g.default <- function(x) c(x = x, y = y)

x <-1
y <-1
g(y)

#H x v
# 1 10

To fix this, y must be passed as an argument or explicitly declared in the parent
environment.

Problem 4: Understanding NextMethod ()

In this example, the class of the object is changed within the function generic2.b, and
NextMethod () is used to invoke the next method in the inheritance hierarchy.

generic2 <- function(x) UseMethod("generic2")

generic2.al <- function(x) "al"
generic2.a2 <- function(x) "a2"

generic2.b <- function(x) {
class(x) <- "al"

Page 2 of



Programming Tools in Data Science 17 October 2024
Exercise 2 - Correction Correction: 24 October 2024

NextMethod ()

}

generic2(structure(list(), class = c("b", "a2")))
## [1] "a2"

When generic2.b() is called, it modifies the class of x to "a1" and calls NextMethod ().
Even though the class of x was modified, the function NextMethod() will dispatch to
generic2.a2(), since the next element in the initial class list was a2.The final result will
be "a2".

Lecture 8: Web Scraping

Problem 1: CSS Diner

Answers to the CSS Diner exercise:

1. plate

2. bento

3. fancy

4. plate apple

5. fancy pickle

6. apple.small/.small

7. orange.small

8. bento orange.small

9. plate, bento

10. *

11. plate *

12. plate + apple

13. bento + pickle

14. plate > apple

15. orange:first-child

16. plate apple:only-child, plate pickle:only-child
17. apple:last-child, pickle:last-child

18. :nth-child(3)

Page 3 of



Programming Tools in Data Science 17 October 2024
Exercise 2 - Correction Correction: 24 October 2024

19. bento:nth-last-child(3)

20. apple:first-of-type

21. mth-of-type(even)

22. plate:nth-of-type(3n+2)

23. plate apple:only-child

24. apple:last-of-type, orange:last-of-type
25. bento:empty

26. apple:not(.small)

27. [for]

28. platel[for]

29. [for = ”Vitaly”]

30. [for” ="Sa”]

31. [for$="ato”]

32. [for*="0bb”].
Problem 2

First follow instructions here. SelectorGadget
Modified code:

library ("robotstxt")

# We check that robots.txt allow to scrape from the following
link

paths_allowed (
path = "/en/real-estate/rent/city-basel",

domain = "https://www.immoscout24.ch/"

)

# We can check robots.txt either by this function or visit the
site directly.

# In this case the function get_robotstxt does not provide the
correct file.

get _robotstxt (domain = "https://www.immoscout24.ch/")

# Download xml2 package to be able to use read_html function.

library ("xml2")

Page 4 of


https://smac-group.github.io/ds/section-web-scraping.html

Programming Tools in Data Science 17 October 2024
Exercise 2 - Correction Correction: 24 October 2024

# Extract html file

real _estate <- read_html(
"https://www.immoscout24.ch/en/real-estate/rent/city-basel"

# To scrape data we need to use another two packages:

library("rvest")

# For using pipe function

library ("magrittr")

# Scraping the data

flats <- real_estate %>%
html_nodes (".HgListingCard_info_RKrwz") ¥%>%
html_text ()

# Printing the obtained text

flats

# Clean data from irrelevante information

flats_df <- data.frame(

rooms = gsub(pattern = " room.x", "", flats) %>%
as.numeric (),
# Be careful with "-": do not mix up dash and hyphen! In this
listing dash should be!
price = gsub(".*, CHF |[.-.x", ""  flats) %>%
gsub (pattern = ",", replacement = "") %>%
as.numeric ()
)
# Print the resulted dataset
flats_df

Alternative Workflow using CSS Selectors

Instead of using the SelectorGadget tool, you can directly use CSS selectors found in your
browser’s developer tools. Here’s an alternative solution in R using rvest:

# 2. Alternative solution using CSS selectors

# To scrape data we use rvest package

library(rvest)

# We read the html file

real _estate <- read_html("https://www.immoscout24.ch/en/real-
estate/rent/city-basel")

# We extract prices from the nodes "span"

prices <- real_estate %>% html_nodes("span + span") %>) html_text
O

# and print the result

prices

# remove the first and two last elements

prices <- prices[-c(1l,length(prices)-1,length(prices))]

prices

# Now we extract data regarding the number of rooms and the space

Page 5 of



Programming Tools in Data Science 17 October 2024
Exercise 2 - Correction Correction: 24 October 2024

tmp_m2_rooms <- real_estate %>% html_nodes("strong") %>% html_
text ()

# and print the result

tmp_m2_rooms

# m2 contains information regarding the square of an appartment

m2 <- tmp_m2_rooms[seq(2, length(m2_rooms), 2)]

m2

# rooms corresponds to the number of rooms

rooms <- tmp_m2_rooms[seq(l, length(m2_rooms), 2)]

rooms

# making a nice dataset

flats_df <- data.frame(

rooms = gsub(pattern = "\\s*rooms", "", rooms) %>%
as.numeric (),
meter_square = gsub("m ","",m2) %>%
as.numeric (),
price = gsub("\\s*xCHF\\sx", "", prices) %>%
gsub (pattern = "\\W", replacement = "") %>%
as.numeric ()
)
#printing the resuling dataset
flats_df

Problem 3: Web Scraping with RSelenium or chromote

Using chromote:

# 3. Repeat exercise 2. using “~RSelenium”™ or ~chromote’
library(chromote)
b <- ChromoteSession$new ()
b$Page$navigate("https://www.immoscout24.ch/en/real-estate/rent/
city-basel")
tmp_m2_rooms <- b$Runtime$evaluate("document.querySelector ('html
") .outerHTML") $result$value %>%
read_html () %>%
html_nodes ("strong") %>%
html_text ()
prices <- b$Runtime$evaluate("document.querySelector ('html').
outerHTML") $result$value %>%
read_html () %>%
html _nodes ("span + span") %>%
html_text ()
# then as in 2.
b$close ()
prices
# Note you can use b$screenshot ("browser.png") to take a
screenshot of the browser window.
# Result might differ from the one obtained with rvest because
the website might have changed or display differently in
chromote.

Page 6 of



Programming Tools in Data Science 17 October 2024
Exercise 2 - Correction Correction: 24 October 2024

Problem 4: Extracting World Bank Data using Regular Expres-
sions

# 1. Extract the dataset from the table in https://data.
worldbank.org/indicator/SP.ADO.TFRT

# The package "Chromote" is used to deal with dynamically
changing sites

library (chromote)

# To work with html files we should use tidyverse library (or
rvest)

# In addition tidyverse has a built-in pipe operation

library(tidyverse)

# Initialization of the website, where to scrape
url <- "https://data.worldbank.org/indicator/SP.ADO.TFRT"

# We simulate a Browser to extract raw_data
b <- ChromoteSession$new ()

b$Page$navigate (url)
raw_data <- b$Runtime$evaluate ("document.querySelector ('html').
outerHTML") $result$value %>%
read_html () %>%
html_nodes(".item") %>%
html_text ()
b$close ()
# We print the collected raw_data
raw_data

# 2. We modify the view of the dataset to make nicer.
# a. Countrycodes

# We will convert names of countries into their short codes using

# the countryside package

library (countrycode)

# First of all we get rid of any numbers using "[[:digit:]]x*"
regular expression

country <- gsub("[[:digit:]]1*", "", raw_data)

# Convert country names to their codes

country_iso <- countrycode (country, origin = 'country.name',
destination = 'iso3c')

# We print the resulting list of codes

country_iso

# However , country_iso contains NA's. Next we check order numbers

of non-NA elements
ind <- which(!is.na(country_iso)) # remove missing iso

Page 7 of



Programming Tools in Data Science 17 October 2024
Exercise 2 - Correction Correction: 24 October 2024

# and print the indeces of such counrties
ind

#b. Further modifications with raw_data

# we replace spaces with "a"

raw_data2 <- gsub("\\s","a",raw_data)

# and print the result

raw_data2

# we replace any non-word charcter with "a"
raw_data2 <- gsub("\\W","a",raw_data2)

# and print the result

raw_data2

# we remove all letters and first 4 digital naumbers

data <- gsub("[[:alpha:]]1*\\d{4}", "", raw_data2)
# and print the result
data

# and convert elements to number

data <- as.numeric(data)

# We print the result. Some of elements are NA
data

# c. We make a nice dataset

# Using tibble library we create a dataset of a type tibble
library(tibble)

fert_rate <- tibble(ISO = country_iso[ind], value = datal[ind])
# and print the resulting datset

fert_rate

Lecture 9: Shiny Applications

Problem 1: Extending the Shiny App

We will extend the Shiny app by adding a second tab to display summary statistics of
the Old Faithful Geyser dataset.

# Define UI for application that draws a histogram
library (shiny)

# To use pipe operator

library (magrittr)

ui <- fluidPage(
# Application title
titlePanel ("01ld Faithful Geyser Data"),
# Sidebar with a slider input for number of bins
sidebarLayout (
sidebarPanel (
sliderInput("cells",

Page 8 of



Programming Tools in Data Science 17 October 2024
Exercise 2 - Correction Correction: 24 October 2024

"Number of bins:",

min = 1,
max = 50,
value = 30),
textInput (inputId = "label_x",
label = "Label for the x-axis:"),
textInput (inputId = "title",
label = "Title for the graph:"),
actionButton (inputId = "make_graph",
label = "Make the plot!",
icon = icon("drafting-compass"))

J

mainPanel (
tabsetPanel (
tabPanel ("Plot", plotOutput("distPlot")),
tabPanel ("Summary statisics", tableOutput("tabStats"))
)

server <- function(input, output) A
$
x <- reactive(faithfull[, 2])
breaks <- reactive(seq(min(x()), max(x()), length.out = input$
cells + 1)) %>% bindEvent (input$make_graph)
xlab <- reactive(input$label_x) %>% bindEvent (input$make_graph)
title <- reactive(input$title) %>% bindEvent (input$make_graph)
output$distPlot <- renderPlot ({

hist(x(), breaks = breaks(), col = 'darkgray', border = '
white', xlab=xlab(), main=title())
b
output$tabStats <- renderTable ({xtable::xtable(t(summary(x())))
b
}
my_app <- shinyApp(ui = ui, server = server)

runApp (my_app)

Solution 2: Reactive Graph Optimization

1. To improve the efficiency, we can first do not make x a reactive function, since we
do not change it. Therefore, we can initialize x outside the server function.

2. Expression for the plot plot_data combines breaks, xlab, title and the plot
changes only when we press the button "make_graph”. There is no need to create
several reactive function, instead we can only one directly for plotyata.

Page 9 of



Programming Tools in Data Science 17 October 2024
Exercise 2 - Correction Correction: 24 October 2024

3. There is no need to use xstable package to calculate the summary of x.

library (shiny)

library (magrittr)

x <- faithfull[, 2]

ui <- fluidPage (

# Application title

titlePanel ("0ld Faithful Geyser Data"),

# Sidebar with input controls
sidebarLayout (
sidebarPanel (
sliderInput ("cells",
"Number of bins:",

min = 1,
max = 50,
value = 30),
textInput (inputId = "label_x",
label = "Label for the x-axis:"),
textInput (inputId = "title",
label = "Title for the graph:"),
actionButton (inputId = "make_graph",
label = "Make the plot!",
icon = icon("drafting-compass")
)

e
# Main panel with plot and summary statistics
mainPanel (
tabsetPanel (
tabPanel ("Plot", plotOutput("distPlot"))
tabPanel ("Summary statistics",
tableOutput ("tabStats"))

server <- function (input, output) {
# Reactive expression to handle all inputs together
plot_data <- eventReactive (input$make_graph, {
list(
breaks = seq(min(x), max(x), length.out = input$cells +
1,
xlab = input$label_x,
title = input$title
)
b

# Render the plot using the grouped reactive data

output$distPlot <- renderPlot ({
hist (x,

Page 10 of



Programming Tools in Data Science 17 October 2024
Exercise 2 - Correction Correction: 24 October 2024

breaks = plot_data () $breaks,

col = 'darkgray',
border = 'white',
xlab = plot_data()$xlab,

main plot_data()$title)

1))

# Render the summary statistics table
output$tabStats <- renderTable(
{summary (x)}

# Run the application
shinyApp(ui = ui, server = server)

Solution 3: Thematic and Visual Customization

Experiment with different themes in Shiny using the bslib package.

library (shiny)
library (magrittr)
library(bslib)
# thematic::thematic_shiny(font = "auto")

# Define UI for application that draws a histogram
ui <- fluidPage (
theme = bs_theme(bootswatch = "superhero", font_scale = 1.5),

# Application title
titlePanel ("0ld Faithful Geyser Data"),

# Sidebar with a slider input for number of bins
sidebarLayout (
sidebarPanel (
sliderInput("cells",
"Number of bins:",

min = 1,
max = 50,
value = 30),
textInput (inputId = "label_x",
label = "Label for the x-axis:"),
textInput (inputId = "title",
label = "Title for the graph:"),
actionButton (inputId = "make_graph",
label = "Make the plot!",
icon = icon("drafting-compass"))

),

# Show a plot of the generated distribution
mainPanel (

Page 11 of



Programming Tools in Data Science 17 October 2024
Exercise 2 - Correction Correction: 24 October 2024

H H H H R

H H ¥ H H H

**

tabsetPanel (
tabPanel ("Plot", plotOutput("distPlot")),
tabPanel ("Summary statisics", tableOutput("tabStats"))

Define server logic required to draw a histogram
server <- function(input, output) {
# generate cells based on input$cells from ui.R
x <- reactive(faithfull[, 2])
breaks <- eventReactive (input$make_graph, {seq(min(x()), max(
x()), length.out = input$cells + 1)1})
xlab <- eventReactive (input$make_graph, {input$label_x})
title <- eventReactive (input$make_graph, {input$titlel)

output$distPlot <- renderPlot ({
# draw the histogram with the specified number of cells
hist(x(), breaks = breaks (), col = 'darkgray', border = '
white', xlab=xlab (), main=title())
1)

server <- function(input, output) {

# bs_themer ()

# generate cells based on input$cells from ui.R

x <- reactive(faithfull[, 2])

breaks <- reactive(seq(min(x()), max(x()), length.out = input$
cells + 1)) %> bindEvent (input$make_graph)

xlab <- reactive(input$label_x) %>% bindEvent (input$make_graph)

title <- reactive (input$title) %>’ bindEvent (input$make_graph)

observeEvent (input$make_graph, message("make a new graph"))

output$distPlot <- renderPlot ({
# draw the histogram with the specified number of cells
hist(x(), breaks = breaks(), col = 'darkgray', border = '
white', xlab=xlab(), main=title())
B

output$tabStats <- renderTable ({xtable::xtable(t(summary(x())))
b

}
# Run the application
shinyApp(ui = ui, server = server)

Page 12 of



